A New Method for Sperm Detection in Infertility Cure: Hypothesis Testing Based on Fuzzy Entropy Decision
نویسندگان
چکیده
ARTICLE HISTORY: Received 15 March 2014 Revised 30 May 2014 Accepted 22 June 2014 In this paper, a new method is introduced for sperm detection in microscopic images for infertility treatment. In this method, firstly a hypothesis testing function is defined to separate sperms from plasma, non-sperm semen particles and noise. Then, some primary candidates are selected for sperms by watershed-based segmentation algorithm. Finally, candidates are either confirmed or rejected using fuzzy entropy decision algorithm. Performance of the proposed method is evaluated on real captured images containing sperms and other specimens of semen in two different scenarios. In the first scenario, semen has low density of sperms however the second scenario belongs to semen with high density of sperms. The obtained results show the greater ability of the proposed method in sperm detection compared to present approaches in both of scenarios. Furthermore, it is shown that 8% and 15% improvements in sperm detection in the first and second scenarios can be achieved by the proposed algorithm. As the final results, the proposed algorithm not only doesn't lead to extract more false objects but also decrease the rate of false detections are decreased compared to existing algorithms.
منابع مشابه
A New Method for Sperm Detection in Infertility Cure: Hypothesis Testing Based on Fuzzy Entropy Decision
In this paper, a new method is introduced for sperm detection in microscopic images for infertility treatment. In this method, firstly a hypothesis testing function is defined to separate sperms from plasma, non-sperm semen particles and noise. Then, some primary candidates are selected for sperms by watershed-based segmentation algorithm. Finally, candidates are either confirmed or rejected us...
متن کاملA New Method for Root Detection in Minirhizotron Images: Hypothesis Testing Based on Entropy-Based Geometric Level Set Decision
In this paper a new method is introduced for root detection in minirhizotron images for root investigation. In this method firstly a hypothesis testing framework is defined to separate roots from background and noise. Then the correct roots are extracted by using an entropy-based geometric level set decision function. Performance of the proposed method is evaluated on real captured images in tw...
متن کاملA New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function
Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...
متن کاملA New Method for Sperm Detection in Human Semen: Combination of Hypothesis Testing and Local Mapping of Wavelet Sub-Bands
Introduction Automated methods for sperm characterization in microscopic videos have some limitations such as: low contrast of the video frames and possibility of neighboring sperms to touch each other. In this paper a new method is introduced for detection of sperms in microscopic videos. Materials and Methods In this work, first microscopic videos are captured from specimens of human semen. S...
متن کاملTESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کامل